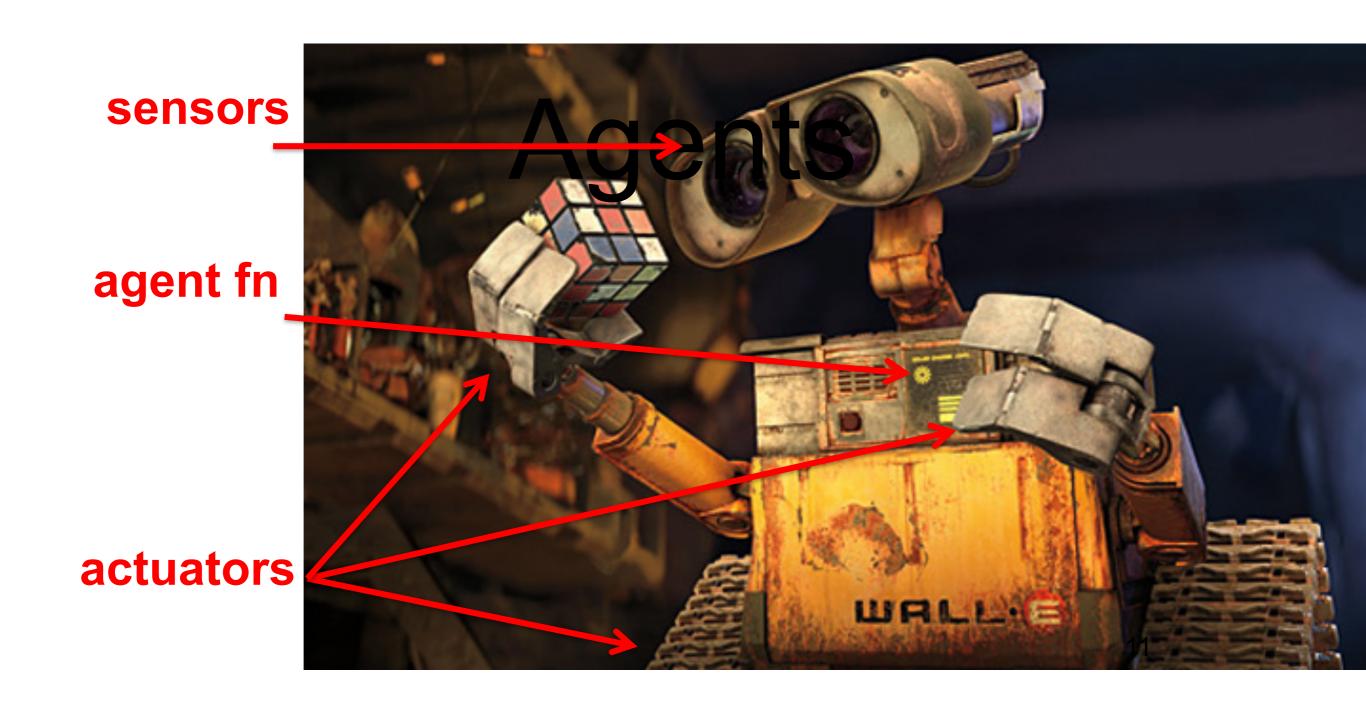
Intelligent Agents

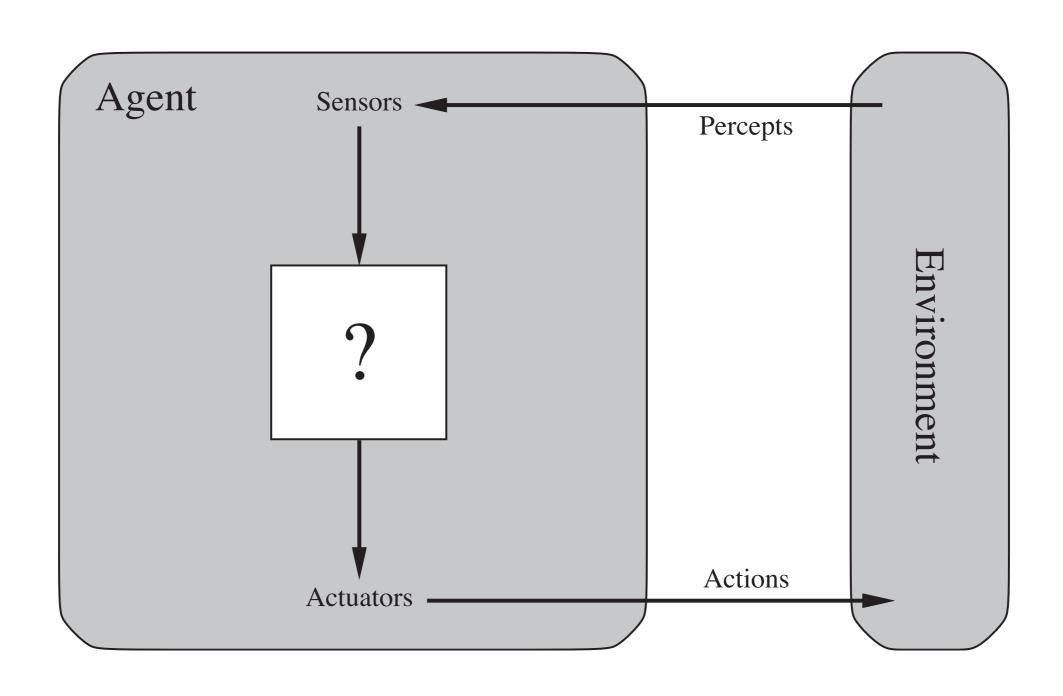
CHAPTER 2

Al as Agents

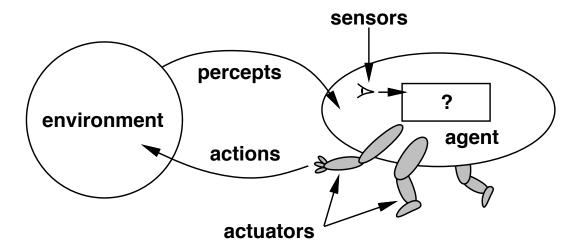
act = AgentFn(percept)



Agents and Environments



Agents and environments



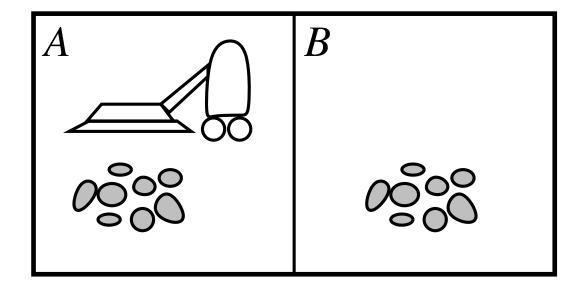
Agents include humans, robots, softbots, thermostats, etc.

The agent function maps from percept histories to actions:

$$f:\mathcal{P}^* o\mathcal{A}$$

The agent program runs on the physical architecture to produce \boldsymbol{f}

Vacuum-cleaner world



Percepts: location and contents, e.g., [A, Dirty]

Actions: Left, Right, Suck, NoOp

A vacuum-cleaner agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], $[A, Dirty]$	Suck
:	:

```
function Reflex-Vacuum-Agent([location,status]) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left
```

What is the **right** function?
Can it be implemented in a small agent program?

Rationality

Fixed performance measure evaluates the environment sequence

- one point per square cleaned up in time T?
- one point per clean square per time step, minus one per move?
- penalize for > k dirty squares?

A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date

Rational \neq omniscient

percepts may not supply all relevant information

Rational \neq clairvoyant

- action outcomes may not be as expected

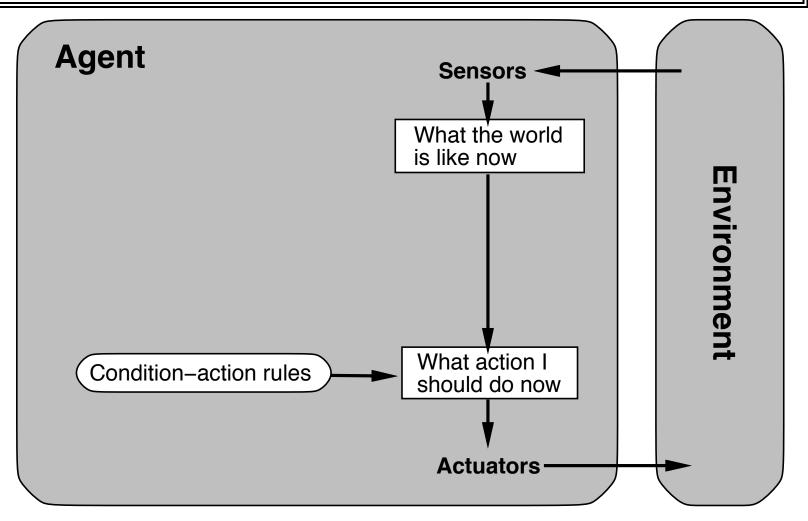
Hence, rational \neq successful

Rational \Rightarrow exploration, learning, autonomy

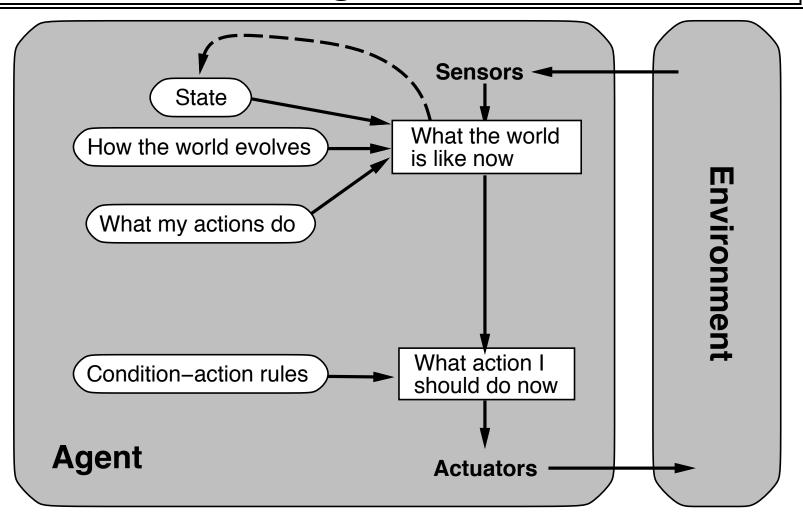
What choices do we have for building an agent program f that, given percept p, current state s and model of the world m chooses action a?

- Reflex: a = f(p)
- History-based: $a = f([p_1, p_2, ..., p_n,])$
- Model-based: $a = f_m(p)$ and may update m
- Goal-based agents $a = f_m(p, s)$ where a best achieves goal
- Utility-based agents $a = f_m(p, s)$ where a maximizes expected utility

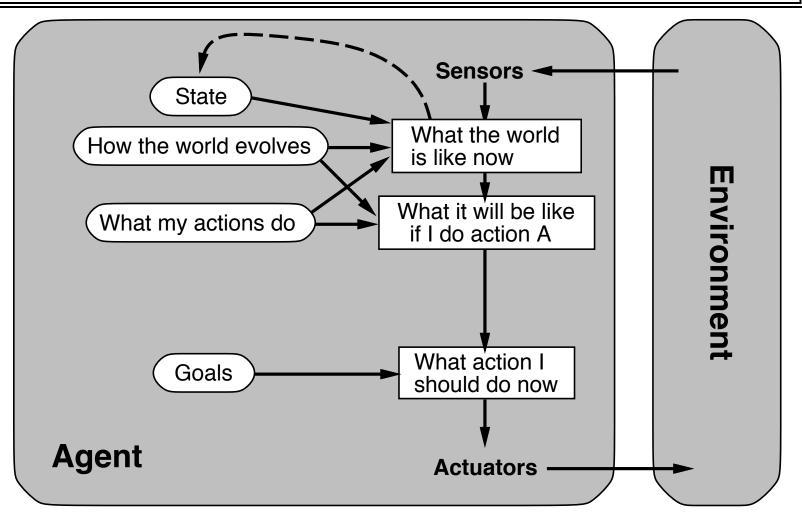
Simple reflex agents



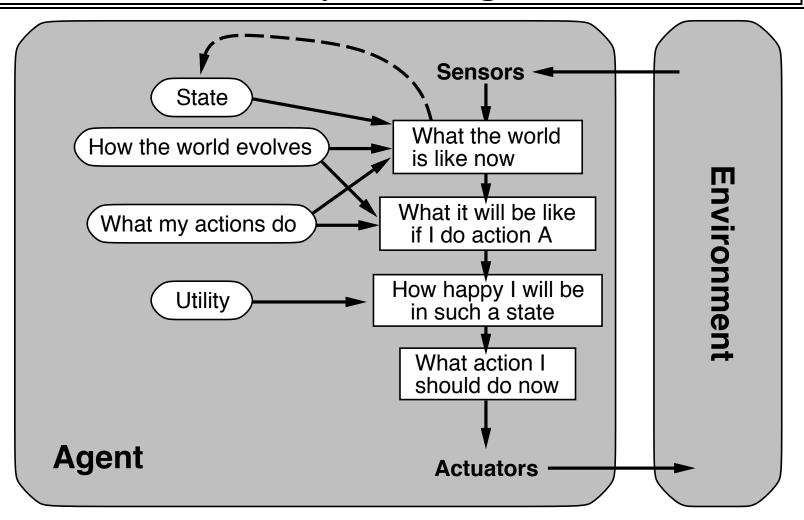
Reflex agents with state



Goal-based agents



Utility-based agents



Learning agents

