CS 221: Artificial Intelligence

Lecture 4: Probabilistic Inference

Sebastian Thrun and Peter Norvig
Slide credit: Dan Klein



Probability

“Probability theory 1s nothing
But common sense reduced to
calculation.”

- Pierre Laplace, 1819

The true logic for this world 1s the
calculus of Probabilities, which takes
account of the magnitude of the
probability which is, or ought to be,
in a reasonable man’s mind.”

- James Maxwell, 1850 4



Probabilistic Inference

= Joel Spolsky:
A very senior developer who moved to Google
told me that Google works and thinks at a
higher level of abstraction...

"Google uses Bayesian filtering the way
[previous employer| uses the if statement,"

he said.



Example: Alarm Network

+e | 0.002
-e | 0.998

B E A P(A|B,E)
+b [+e |+a [0.95

+b [+e | —-a [ 0.05

+b | -e |+a [0.94

-b |+e | +a | 0.29

A J P(J|A) A M P(M|A) +b | -e | -a | 0.06
+a |+ |0.9 +a [+m | 0.7

+a | -j |0.1 +a |-m | 0.3 -b [+e | -a | 0.71

-a |+ |0.05 -a |+m | 0.01 -b [ -e | +a | 0.001

-a | -] |0.95 -a |-m | 0.99 -b | -e | —-a | 0.999




Probabilistic Inference

= Probabilistic Inference:

calculating some quantity from a
joint probabillity distribution
= Posterior probability:
P(Q|E1 =e1,... B, = ¢e) °
= Most likely explanation:
argmax, P(Q =q|E1 = e ..

y
= |n general, partition variables into 0 ”

Query (Q or X), Evidence (E), and
Hidden (H or Y) variables



Inference by Enumeration

= Given unlimited time, inference in BNs is easy
= Recipe:

= State the unconditional probabilities you need

* Enumerate all the atomic probabilities you need

= Calculate sum of products

= Example: ° G
P(+bl +j,+m) = °
| |

P(__ba lj7 Im)

P(4j, +m) Q Q |




Inference by Enumeration

®

P(+b, +j, tm) e

=0 2y P(tD, +j, tm, e, a) Q m
=2 2q P(+D) P(e) P(altb,e) P(tjla) P(+mla)

= P(4b)P(+e)P(+a|+b, +e) P(+j|+a) P(+m|+a)+
P(+b)P(+e) P(—a|+b, +e) P(+j|—a) P(+m|—a)+
P(4b) P(—€) P(4a|+b, —) P(+j|+a) P(+m|+a)+
P(4b) P(—€) P(—a|+b, —e) P(+j|—a) P(+m| —a)
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Inference by Enumeration

= An optimization: pull terms out of G G

summations e
P(+b, +j, +m) Q m

=2 g P(th, 1], +m, e, a)
=2 2q P(+D) P(e) P(altb,e) P(tjla) P(+mla)

= P(+h) )., Ple) )., Plaltb.e) P(+jla) P(+m|a) or
= P(+h) 2 q P(Hjla) P(tmla) 3., P(e) Paltb.e) "



Inference by Enumeration

Problem?

Not just 4 rows; approximately 1016 rows! b



Variable Elimination

= Why is inference by enumeration so slow?

* You join up the whole joint distribution before you sum
out (marginalize) the hidden variables

(2p 2gq P(+D) P(e) P(altb,e) P(tjla) P(+mla))
* You end up repeating a lot of work!

* |dea: interleave joining and marginalizing!
= Called “Variable Elimination”

= Still NP-hard, but usually much faster than inference
by enumeration

= Requires an algebra for combining “factors”

(multi-dimensional arrays) 17



Variable Elimination Factors

P(T,W)
= Joint distribution: P(X,Y) T W | P
= Entries P(x,y) for all x, y hot | sun | 0.4
= Sums to 1 hot rain | 0.1

cold sun 0.2

cold rain 0.3

= Selected joint: P(x,Y) P(cold, W)
= A slice of the joint distribution T W P
= Entries P(x,y) for fixed x, all y cold | sun | 0.2
= Sums to P(x) cold | rain | 0.3
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Variable Elimination Factors

Family of conditionals: P(X |Y)
= Multiple conditional values
= Entries P(x | y) for all x, y

= Sums to |Y]
(e.g. 2 for Boolean Y)

Single conditional: P(Y | x)
= Entries P(y | x) for fixed x, all y
= Sumsto 1

- P(W hot)

- P(W/|cold)

P(W|T)

T W P
hot sun 0.8
hot rain 0.2
cold sun 0.4
cold rain 0.6
P(W cold)

T W P
cold sun 0.4
cold rain 0.6
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Variable Elimination Factors

P(rain|T)
: Spemﬂgd family: P(y '| X) - v 5
= Entries P(y | x) for fixed vy, .
hot rain | 0.2
but for all x .
= Sums to ... who knows! cold | rain | 0.6

!

= In general, when we write P(Y, ... Y| X; ... Xy)

= |tis a “factor,” a multi-dimensional array
= |ts values are all P(y, ... Y\ | X1 --- Xp)

P(rain|hot)
P(rain|cold)

= Any assigned X or Y is a dimension missing (selected) from the array
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Example: Traffic Domain

= Random Variables
= R: Raining
= T: Traffic
= L: Late for class

P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+t

0.1

-r

-t

0.9

P(L|T)

+t

+l

0.3

+t

0.7

-t

+l

0.1

-t

0.9
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Variable Elimination Outline

* Track multi-dimensional arrays called factors
= |nitial factors are local CPTs (one per node)

P(R) P(T|R) P(L|T)
+r 0.1 +r | +t | 0.8 +t + | 0.3
-r 0.9 +r -t 1 0.2 +t -| 0.7
-r +t | 0.1 -t + [ 0.1
-r -t 0.9 -t -| 0.9
= Any known values are selected

= E.g.ifwe know L = 4/, the initial factors are

P(R) P(T|R)  P(44T)
+r 0.1 +r | +t [ 0.8 +t + | 0.3
-r 0.9 +r -t | 0.2 -t + | 0.1

-r + | 0.1
-r -t [ 0.9

= VE: Alternately join factors and eliminate variables **



Operation 1: Join Factors

= Combining factors:

= Just like a database join
= Get all factors that mention the joining variable
= Build a new factor over the union of the variables involved

= Example: Join on R

@ P(R) X P(T|R) =——> P(R,T)

+r 0.1 +r | +t | 0.8 +r | +t | 0.08

-r 0.9 +r | -t |0.2 +r | -t | 0.02

a |+t (01 or | +t | 0.09
-r| -t (0.9 -r | -t | 0.81

» Computation for each entry: pointwise products

vr,t . P(r,t) = P(r) - P(t|r)



Operation 2: Eliminate

= Second basic operation: marginalization
= Take a factor and sum out a variable

= Shrinks a factor to a smaller one

= A projection operation
= Example:

P(R,T)
w[+t]oos] SUM I P(T)

+r | -t | 0.02 > +t | 0.17

-r | +t | 0.09 -t | 0.83
-r | -t | 0.81




Example: Compute P(L)

P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+t

0.1

-r

-t

0.9

P(L|T)

+t

+l

0.3

+t

0.7

-t

+l

0.1

-t

0.9

Join R
—>

Sum out R
P(R,T) ()
+r | +t | 0.08
+r| -t ] 0.02 +t | 0.17
-+ | +t]0.09 t | 0.83
-r| -t | 0.81

P(L|T) Cr 1> P(L|T)

+t | +1 [0.3
+t | -1 0.7
-t | +l [0.1
-t | -1 0.9

+t | +1 |0.3

+t | -l 0.7

-t | +1 |0.1

-t | -1 ]0.9
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Example: Compute P(L)
LD

P(T)

+t

0.17

0.83

P(L|T)

+t

+l

0.3

+t

0.7

+l

0.1

0.9

Join T

>

P(T, L)

Sumout T

+t

+l

0.051

0

P(L)

+t

0.119

+ 1 0.134

+l

0.083

-l 10.886

0.747

Early marginalization is variable elimination




Evidence

= |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R)

+r

0.1

-r

0.9

» Computing P(L|+ 1) |

P(+r)

= We eliminate all vars other than query + evidence

P(T|R)  P(L|T)

+r

+t

+r

-t

-r

+t

-r

-t

0.8 +t + ] 0.3
0.2 +t -| 0.7
0.1 -t + ] 0.1
0.9 -t -| 0.9

the initial factors become:

P(T| 4+ ) P(L|T)
+r | +t | 0.8 +t | + | 0.3
+r | -t |02 +t | -l | 07
-t + [ 0.1
-t -l 0.9
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Evidence ||

= Result will be a selected joint of query and evidence
= E.g.for P(L | +r), we’ d end up with:

P(+"“» L) Normalize P(L ‘|"'“>
+r | 41 | 0.026 ::; +l | 0.26
+r| -1 | 0.074 -l | 0.74

= To get our answer, just normalize this!

= That' sit!



General Variable Elimination

* Query: P(Q|E1 =e€1,... B, = ep)

= Start with initial factors:
» Local CPTs (but instantiated by evidence)

= While there are still hidden variables (not Q or evidence):

* Pick a hidden variable H
= Join all factors mentioning H
= Eliminate (sum out) H

= Join all remaining factors and normalize

29



Example

P(B|j, m)

P(B) P(E) P(A|B, E) P(jlA)  P(m|A)

Choose 4
P(A|B, E)
P(j]A) X > P(j,m,A|B,E) [y gq4)> P(j,m|B,E)
P(m|A)

P(B) P(E) P(j,m|B, E)
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Example

P(B) P(E) P(j,m|B, E)
Choose E
P(E) ::><> P(j,m, E|B) :2 > P(j,m|B)
P(j,m|B, E) Y
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

X > P(j4,m,B) Normalize > P(B|],m)
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Approximate Inference

Sampling / Simulating / Observing a
Sampling is a hot topic in machine learning,
and it is really simple G
Basic idea:

= Draw N samples from a sampling distribution S

= Compute an approximate posterior probability @

= Show this converges to the true probability P

Why sample?
= Learning: get samples from a distribution you don’ t know

» |nference: getting a sample is faster than computing the exact

answer (e.g. with variable elimination)
33



Prior Sampling

P(C)
+C 0.5
-C 0.5

P(S|C)
+c | +s | 0.1
-s [ 0.9
-c | +s [ 0.5
-s | 0.5

P(WIS, R)

+5 +r +w | 0.99

-W 0.01

-r +w | 0.90

-W 0.10

-s +r +w | 0.90

-W 0.10

-r +w | 0.01

-W 0.99

P(R|C)

+c | +r [ 0.8

Samples:

+C, -S, +I, +W
-C, +S, I, +W
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Prior Sampling

= This process generates samples with probability:
Sps(zy...zn) = || P(x;|Parents(X;)) = P(z1...zn)

1=1
...i.e. the BN’ s joint probability

= Let the number of samples of an event be Nps(z1...xn)

lim Nps(zvl, e ,:Ijn)/N

N—00
= P(x1...21n)

= |.e., the sampling procedure is consistent

= Then lim P(z1,...,2zn)
N—0o0

35



Example

= We'll get a bunch of samples from the BN:

+C, -S, +r, +wW
+C, +s, +r, +W
-C, *s, *+r, -w
+C, -S, *r, +w
-C, -S, -, +W

= |f we want to know P(W)

We have counts <+w:4, -w:1>

Normalize to get P(W) = <+w:0.8, -w:0.2>

This will get closer to the true distribution with more samples
Can estimate anything else, too

Fast: can use fewer samples if less time (what’ s the drawback?)

36



Rejection Sampling

= Let’ s say we want P(C)
* No point keeping all samples around
= Just tally counts of C as we go

= Let’ s say we want P(C| +s)

= Same thing: tally C outcomes, but 4G, +S, T, +W
ignore (reject) samples which don’ t -C, +S, I, -W
have S=+s —hE— S

.. i . . e—S—F W
* This is called rejection sampling

= |t is also consistent for conditional

probabilities (i.e., correct in the limit)
37



Sampling Example

= There are 2 cups.
= First: 1 penny and 1 quarter
= Second: 2 quarters

= Say | pick a cup uniformly at
random, then pick a coin
randomly from that cup. It's a
quarter. What is the probability
that the other coin in that cup
IS also a quarter?

N
&)
N
&)

25 25
25 1
25 25

;

25 25
25 1
25 25
25 25

N N N N

a1 O 3 3
N N

-~ O o SN

;

747/
1000



Likelihood Weighting

= Problem with rejection sampling:
» |f evidence is unlikely, you reject a lot of samples
= You don’ t exploit your evidence as you sample

, -b, -a

= Consider P(B|+a) b -3
-b, -a

+b, +a

» |dea: fix evidence variables and sample the rest

-b +a

-b, +a

-b, +a

+b, +a

= Problem: sample distribution not consistent!

= Solution: weight by probability of evidence given parents



Likelihood Weighting

P(C)

+C

0.5

-C

0.5

P(S|C)
+c | +s | 0.1
-s [ 0.9
-c | +s | 0.5
-s | 0.5

P(WIS, R)

+5 +r +w | 0.99

-W 0.01

-r +w | 0.90

-W 0.10

-s +r +w | 0.90

-W 0.10

-r +w | 0.01

-W 0.99

P(R|C)

+c | +r [ 0.8

Samples:

+c, +s, +r, +w  0.099

w=1.0x0.1x%x0.99
40



Likelihood Weighting

= Sampling distribution if z sampled and e fixed evidence

[

Sws(z,e) = || P(z]|Parents(Z;))
i=1

= Now, samples have weights

w(z,e) = ﬁ P(e;|Parents(E;))
i=1

= Together, weighted sampling distribution is consistent

[ m
Sws(z,€) - w(z,€) = | | P(z;|Parents(z;)) | | P(e;|Parents(e;))

= P(z,e) 41



Likelihood Weighting

= Likelihood weighting is good
= We have taken evidence into account as
we generate the sample

= E.g. here, W’ s value will get picked
based on the evidence values of S, R

= More of our samples will reflect the state
of the world suggested by the evidence
= Likelihood weighting doesn’ t solve
all our problems
= Evidence influences the choice of
downstream variables, but not upstream
ones (C isn’ t more likely to get a value
matching the evidence)
= We would like to consider evidence
when we sample every variable

42



Markov Chain Monte Carlo

» |dea: instead of sampling from scratch, create samples
that are each like the last one.

= Procedure: resample one variable at a time, conditioned
on all the rest, but keep evidence fixed. E.g., for P(b|c):

() DD DHDH(

= Properties: Now samples are not independent (in fact
they’ re nearly identical), but sample averages are still
consistent estimators!

= What’s the point: both upstream and downstream
variables condition on evidence.

43



World’s most famous
probability problem?



Monty Hall Problem

» Three doors, contestant chooses one.

= Game show host reveals one of two
remaining, knowing it does not have prize

= Should contestant accept offer to switch
doors?

= P(+prize|mswitch) = ?
P(+prize|+switch) = ?

45



Monty Hall on Monty Hall Problem

September 10, 1990

Mr. Lawrence A. Denenberg

Harvard University Center for

Research in Computing Technology

Aiken Computation Laboratory, Room 102
Harvard University

Cambridge, MA 02138

Dear Larry:

In sending you my okay for the use of '"The Monty
Hall Paradox,'" I should like to ask you a
question. You mention that in part (a), the
player should switch doors even without addi-
tional compensation -- indeed the player should
be willing to pay Monty up to $21,845 for the
privilege of switching.

Now, I am not well versed in algorithms; but

as I see it, it wouldn't make any difference

after the player has selected Door A, and

having been shown Door C - why should he then

attempt to switch to Door B? The major prize

could only be in one of the three doors. He

has made his selection of one of the doors.

He has been shown one of the doors that contains

a "booby'"; ergo, the major prize will be either 46
in the one he selected (Door A) or the one that



Monty Hall on Monty Hall Problem

question. You mention that in part (a), the

player should switch doors even without addi- I
tional compensation ~- indeed the player should

be willing to pay Monty up to $21,845 for the

privilege of switching.

Now, I am not well versed in algorithms; but

as I see it, it wouldn't make any difference
after the player has selected Door A, and
having been shown Door C - why should he then
attempt to switch to Door B? The major prize
could only be in one of the three doors. He
has made his selection of one of the doors.

He has been shown one of the doors that contains
a "booby"; ergo, the major prize will be either
in the one he selected (Door A) or the one that
remains, Door B. Why would he be compelled to
switch doors and even pay for the privilege?
The chances of the major prize being behind
Door A have not changed. He still has one

of the two remaining doors. What makes Door B
such an attraction? I would be pleased if you
would write me, explaining this situation.

Best of luck with the book.

Sincerely,
/

va\) “eef 47



