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Problem types 
!  Fully observable, deterministic 

!  single-belief-state problem 
 

!  Non-observable  
!  sensorless (conformant) problem  

 
!  Partially observable/non-deterministic  

!  contingency problem 
!  interleave search and execution  

 
!  Unknown state space  

!  exploration problem 
!  execution first 



Search Problems 
!  A search problem consists of: 

!  A state space 

!  A transition model 

 
!  A start state, goal test, and path cost function 

!  A solution is a sequence of actions (a plan) 
which transforms the start state to a goal state 

N, 1 

E, 1 



Transition Models 

!  Successor function 
!  Successors(      ) = {(N, 1,      ), (E, 1,      )} 

!  Actions and Results 
!  Actions(      ) = {N, E} 
! Result(       , N) =       ; Result(      , E) =   

! Cost(      , N,      ) = 1; Cost(      , E,      ) = 1   



Example: Romania 
!  State space: 

!  Cities 

!  Successor 
function: 
!  Go to adj city 

with cost = dist 

!  Start state: 
!  Arad 

!  Goal test: 
!  Is state == 

Bucharest? 

!  Solution? 



State Space Graphs 

!  State space graph: A 
mathematical 
representation of a 
search problem 
!  For every search problem, 

there�s a corresponding 
state space graph 

!  The successor function is 
represented by arcs 

!  This can be large or 
infinite, so we won�t 
create it in memory 
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Ridiculously tiny search graph 
for a tiny search problem 



Exponential State Space Sizes 

!  Search Problem: 
  Eat all of the food 

!  Pacman positions: 
  10 x 12 = 120 

!  Food count: 30 
 

!  Ghost positions: 12 
!  Pacman facing: 

  up, down, left, right 



Search Trees 

!  A search tree: 
!  This is a �what if� tree of plans and outcomes 
!  Start state at the root node 
!  Children correspond to successors 
!  Nodes contain states, correspond to paths to those states 
!  For most problems, we can never actually build the whole tree 

E, 1 N, 1 



Another Search Tree 

!  Search: 
!  Expand out possible plans 
! Maintain a frontier of unexpanded plans 
!  Try to expand as few tree nodes as possible 



General Tree Search 

!  Important ideas: 
!  Frontier (aka fringe) 
!  Expansion 
!  Exploration strategy 

!  Main question: which frontier nodes to explore? 

Detailed pseudocode 
is in the book! 



State Space vs. Search Tree 
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We construct both 
on demand – and 
we construct as 
little as possible. 

Each NODE in in the 
search tree is an 
entire PATH in the 
state space. 



States vs. Nodes 
!  Nodes in state space graphs are problem states 

!  Represent an abstracted state of the world 
!  Have successors, can be goal / non-goal, have multiple predecessors 

!  Nodes in search trees are paths 
!  Represent a path (sequence of actions) which results in the node�s state 
!  Have a problem state and one parent, a path length, (a depth) & a cost 
!  The same problem state may be achieved by multiple search tree nodes 

Depth 5 

Depth 6 

Parent 

Node 

Search Tree State Space Graph 

Action 



Depth First Search 
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Strategy: expand 
deepest node first 

Implementation: 
Frontier is a LIFO 
stack 

[demo: dfs] 



Breadth First Search 
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Search 

Tiers 

Strategy: expand 
shallowest node first 

Implementation: 
Fringe is a FIFO 
queue 

[demo: bfs] 



Santayana�s Warning 

!  �Those who cannot remember the past are 
condemned to repeat it.� – George Santayana 

!  Failure to detect repeated states can cause 
exponentially more work (why?) 



Graph Search 

!  In BFS, for example, we shouldn�t bother 
expanding the circled nodes (why?) 
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Graph Search 
!  Very simple fix: never expand a state twice 

!  Can this wreck completeness?  Lowest cost?                



Graph Search Hints 

!  Graph search is almost always better than 
tree search (when not?) 

!  Implement explored as a dict or set 

!  Implement frontier as priority Q and set 



Costs on Actions 

Notice that BFS finds the shortest path in terms of number of 
transitions.  It does not find the least-cost path. 
We will quickly cover an algorithm which does find the least-cost path.   
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Uniform Cost Search 
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Expand cheapest node first: 

Frontier is a priority queue 
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Uniform Cost Issues 
!  Remember: explores 

increasing cost contours 

!  The good: UCS is 
complete and optimal! 

!  The bad: 
!  Explores options in every 
�direction� 

!  No information about goal 
location Start Goal 

…

c ≤ 3 

c ≤ 2 
c ≤ 1 

[demos: ucs, ucs2] 



Uniform Cost Search 

!  What will UCS do for this graph? 

!  What does this mean for completeness? 
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AI Lesson 

To do more, 
Know more 



Search Heuristics 

!  Any estimate of how close a state is to a goal 
!  Designed for a particular search problem 
!  Examples: Manhattan distance, Euclidean distance 
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Heuristics 



Greedy Best First Search 

!  Expand the node that seems closest to goal… 

!  What can go wrong? 
[demos: gbf1, gbf2] 



Greedy goes wrong 
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Best First / Greedy Search 
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!  Strategy: expand the closest node to the goal 

[demos: gbf1, gbf2] 



Combining UCS and Greedy 
!  Uniform-cost orders by path cost, or backward cost  g(n) 
!  Best-first orders by distance to goal, or forward cost  h(n) 

!  A* Search orders by the sum: f(n) = g(n) + h(n) 
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A* Search Progress 

source: wikipedia page for A* Algorithm; by Subh83 



!  Should we stop when we enqueue a goal? 

!  No: only stop when we dequeue a goal 

When should A* terminate? 
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Is A* Optimal? 
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!  What went wrong? 
!  Actual bad path cost (5) < estimate good path cost (1+6) 
!  We need estimates (h=7) to be less than  

actual (5) costs!   



Admissible Heuristics 

!  A heuristic h is admissible (optimistic) if: 

 where             is the true cost to a nearest goal 
 
 
 
                     Never overestimate! 
 



Creating Admissible Heuristics 
!  Most of the work in solving hard search problems 

optimally is in coming up with admissible heuristics 

!  Often, admissible heuristics are solutions to relaxed 
problems, where new actions are available 

!  Inadmissible heuristics are often useful too (why?) 
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Optimality of A*: Blocking 
…Notation: 

!  g(n) = cost to node n 

!  h(n) = estimated cost from n 

to the nearest goal (heuristic) 

!  f(n) = g(n) + h(n) = 

estimated total cost via n 

!  G*: a lowest cost goal node 

!  G: another goal node 



Optimality of A*: Blocking 
Proof: 
!  What could go wrong? 
!  We�d have to have to pop a 

suboptimal goal G off the 
frontier before G* 

!  This can�t happen: 
!  Imagine a suboptimal 

goal G is on the queue 
!  Some node n which is a 

subpath of G* must also 
be on the frontier (why?) 

!  n will be popped before G 

…



Properties of A* 

…
b

…
b

Uniform-Cost A* 



UCS vs A* Contours 

!  Uniform-cost expanded 
in all directions 

!  A* expands mainly 
toward the goal, but 
does hedge its bets to 
ensure optimality 

Start Goal 

Start Goal 

[demos: conu, cona] 



Example: 8 Puzzle 

!  What are the states? 
!  How many states? 
!  What are the actions? 
!  What states can I reach from the start state? 
!  What should the costs be? 



8 Puzzle  

!  Heuristic: Number tiles  
misplaced 

!  Why is it admissible? 

!  h(start) = 
!  8 
!  This is a relaxed-problem 

 heuristic: 
 
 
Move A to B if adjacent(A,B) and empty(B) 

Average nodes expanded when 
optimal path has length… 

…4 steps …8 steps …12 steps 

UCS 112 6,300 3.6 x 106 

TILES 13 39 227 



8 Puzzle  
!  What if we had an easier  

8-puzzle where any tile  
could slide one step at any  
time, ignoring other tiles? 

!  Total Manhattan distance 
!  Why admissible? 

!  h(start) = 

!  3 + 1 + 2 + … = 18 
 

!  Relaxed problem: 
 
Move A to B if adjacent(A,B) and empty(B) 

Average nodes expanded when 
optimal path has length… 

…4 steps …8 steps …12 steps 

TILES 13 39 227 
 

MANHATTAN 12 25 73 



Trivial Heuristics, Dominance 
!  Dominance: ha ≥ hc if 

!  Heuristics form a semi-lattice: 
!  Max of admissible heuristics is admissible 

!  Trivial heuristics 
!  Bottom of lattice is the zero heuristic (what 

does this give us?) 
!  Top of lattice is the exact heuristic 



Other A* Applications 

!  Path finding / routing problems 
!  Resource planning problems 
!  Robot motion planning 
!  Language analysis 
!  Machine translation 
!  Speech recognition 
! … 



Summary: A* 

!  A* uses both backward costs, g(n), and 
(estimates of) forward costs, h(n) 

!  A* is optimal with admissible heuristics 

!  Heuristic design is key: often use relaxed 
problems 

!  A* is not the final word in search algorithms 
(but it does get the final word for today) 


