
CS 221: Artificial Intelligence
Fall 2011

Lecture 2: Search

(Slides from Dan Klein,

with help from Stuart Russell, Andrew Moore, Teg Grenager,
Peter Norvig)

9

Problem types
!  Fully observable, deterministic

!  single-belief-state problem

!  Non-observable
!  sensorless (conformant) problem

!  Partially observable/non-deterministic

!  contingency problem
!  interleave search and execution

!  Unknown state space

!  exploration problem
!  execution first

Search Problems
!  A search problem consists of:

!  A state space

!  A transition model

!  A start state, goal test, and path cost function

!  A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

N, 1

E, 1

Transition Models

!  Successor function
!  Successors() = {(N, 1,), (E, 1,)}

!  Actions and Results
!  Actions() = {N, E}
! Result(, N) = ; Result(, E) =

! Cost(, N,) = 1; Cost(, E,) = 1

Example: Romania
!  State space:

!  Cities

!  Successor
function:
!  Go to adj city

with cost = dist

!  Start state:
!  Arad

!  Goal test:
!  Is state ==

Bucharest?

!  Solution?

State Space Graphs

!  State space graph: A
mathematical
representation of a
search problem
!  For every search problem,

there�s a corresponding
state space graph

!  The successor function is
represented by arcs

!  This can be large or
infinite, so we won�t
create it in memory

S

G

d

b

p q

c

e

h

a

f

r

Ridiculously tiny search graph
for a tiny search problem

Exponential State Space Sizes

!  Search Problem:
 Eat all of the food

!  Pacman positions:
 10 x 12 = 120

!  Food count: 30

!  Ghost positions: 12
!  Pacman facing:

 up, down, left, right

Search Trees

!  A search tree:
!  This is a �what if� tree of plans and outcomes
!  Start state at the root node
!  Children correspond to successors
!  Nodes contain states, correspond to paths to those states
!  For most problems, we can never actually build the whole tree

E, 1 N, 1

Another Search Tree

!  Search:
!  Expand out possible plans
! Maintain a frontier of unexpanded plans
!  Try to expand as few tree nodes as possible

General Tree Search

!  Important ideas:
!  Frontier (aka fringe)
!  Expansion
!  Exploration strategy

!  Main question: which frontier nodes to explore?

Detailed pseudocode
is in the book!

State Space vs. Search Tree

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in the
search tree is an
entire PATH in the
state space.

States vs. Nodes
!  Nodes in state space graphs are problem states

!  Represent an abstracted state of the world
!  Have successors, can be goal / non-goal, have multiple predecessors

!  Nodes in search trees are paths
!  Represent a path (sequence of actions) which results in the node�s state
!  Have a problem state and one parent, a path length, (a depth) & a cost
!  The same problem state may be achieved by multiple search tree nodes

Depth 5

Depth 6

Parent

Node

Search Tree State Space Graph

Action

Depth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r q p

h
f d

b
a

c

e

r

Strategy: expand
deepest node first

Implementation:
Frontier is a LIFO
stack

[demo: dfs]

Breadth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy: expand
shallowest node first

Implementation:
Fringe is a FIFO
queue

[demo: bfs]

Santayana�s Warning

!  �Those who cannot remember the past are
condemned to repeat it.� – George Santayana

!  Failure to detect repeated states can cause
exponentially more work (why?)

Graph Search

!  In BFS, for example, we shouldn�t bother
expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

Graph Search
!  Very simple fix: never expand a state twice

!  Can this wreck completeness? Lowest cost?

Graph Search Hints

!  Graph search is almost always better than
tree search (when not?)

!  Implement explored as a dict or set

!  Implement frontier as priority Q and set

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.
We will quickly cover an algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

8 1

8

2

3

1

4

4

15

1

3
2

2

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

Expand cheapest node first:

Frontier is a priority queue
S

G

d

b

p q

c

e

h

a

f

r

3 9 1

16 4
11

5

7 13

8

10 11

17 11

0

6

3
9

1

1

2

8

8 1

15

1

2

Cost
contours

2

Uniform Cost Issues
!  Remember: explores

increasing cost contours

!  The good: UCS is
complete and optimal!

!  The bad:
!  Explores options in every
�direction�

!  No information about goal
location Start Goal

…

c ≤ 3

c ≤ 2
c ≤ 1

[demos: ucs, ucs2]

Uniform Cost Search

!  What will UCS do for this graph?

!  What does this mean for completeness?

START

GOAL

a

b
1

1

0

0

AI Lesson

To do more,
Know more

Search Heuristics

!  Any estimate of how close a state is to a goal
!  Designed for a particular search problem
!  Examples: Manhattan distance, Euclidean distance

10

5
11.2

Heuristics

Greedy Best First Search

!  Expand the node that seems closest to goal…

!  What can go wrong?
[demos: gbf1, gbf2]

Greedy goes wrong

S
G

Best First / Greedy Search

S

G

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5
34

4

15
1

2 5
2

h=12

h=11

h=8

h=8

h=5 h=4

h=6

h=9

h=0

h=4

h=6 h=11

e

!  Strategy: expand the closest node to the goal

[demos: gbf1, gbf2]

Combining UCS and Greedy
!  Uniform-cost orders by path cost, or backward cost g(n)
!  Best-first orders by distance to goal, or forward cost h(n)

!  A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

5

1
1

2

h=6 h=0
c

h=7

3

e h=1
1

A* Search Progress

source: wikipedia page for A* Algorithm; by Subh83

!  Should we stop when we enqueue a goal?

!  No: only stop when we dequeue a goal

When should A* terminate?

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0

h = 3

Is A* Optimal?

A

G S

1
3

h = 6

h = 0

5

h = 7

!  What went wrong?
!  Actual bad path cost (5) < estimate good path cost (1+6)
!  We need estimates (h=7) to be less than

actual (5) costs!

Admissible Heuristics

!  A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal

 Never overestimate!

Creating Admissible Heuristics
!  Most of the work in solving hard search problems

optimally is in coming up with admissible heuristics

!  Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

!  Inadmissible heuristics are often useful too (why?)

15
366

Optimality of A*: Blocking
…Notation:

!  g(n) = cost to node n

!  h(n) = estimated cost from n

to the nearest goal (heuristic)

!  f(n) = g(n) + h(n) =

estimated total cost via n

!  G*: a lowest cost goal node

!  G: another goal node

Optimality of A*: Blocking
Proof:
!  What could go wrong?
!  We�d have to have to pop a

suboptimal goal G off the
frontier before G*

!  This can�t happen:
!  Imagine a suboptimal

goal G is on the queue
!  Some node n which is a

subpath of G* must also
be on the frontier (why?)

!  n will be popped before G

…

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

!  Uniform-cost expanded
in all directions

!  A* expands mainly
toward the goal, but
does hedge its bets to
ensure optimality

Start Goal

Start Goal

[demos: conu, cona]

Example: 8 Puzzle

!  What are the states?
!  How many states?
!  What are the actions?
!  What states can I reach from the start state?
!  What should the costs be?

8 Puzzle

!  Heuristic: Number tiles
misplaced

!  Why is it admissible?

!  h(start) =
!  8
!  This is a relaxed-problem

 heuristic:

Move A to B if adjacent(A,B) and empty(B)

Average nodes expanded when
optimal path has length…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

8 Puzzle
!  What if we had an easier

8-puzzle where any tile
could slide one step at any
time, ignoring other tiles?

!  Total Manhattan distance
!  Why admissible?

!  h(start) =

!  3 + 1 + 2 + … = 18

!  Relaxed problem:

Move A to B if adjacent(A,B) and empty(B)

Average nodes expanded when
optimal path has length…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73

Trivial Heuristics, Dominance
!  Dominance: ha ≥ hc if

!  Heuristics form a semi-lattice:
!  Max of admissible heuristics is admissible

!  Trivial heuristics
!  Bottom of lattice is the zero heuristic (what

does this give us?)
!  Top of lattice is the exact heuristic

Other A* Applications

!  Path finding / routing problems
!  Resource planning problems
!  Robot motion planning
!  Language analysis
!  Machine translation
!  Speech recognition
! …

Summary: A*

!  A* uses both backward costs, g(n), and
(estimates of) forward costs, h(n)

!  A* is optimal with admissible heuristics

!  Heuristic design is key: often use relaxed
problems

!  A* is not the final word in search algorithms
(but it does get the final word for today)

