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The learning diagram - where we left it
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Error measures

What does "h =~ f" mean?
Error measure: E(h, f)
Almost always pointwise definition: e (h(x), f(x))

Examples:

Squared error e (h(x), f(x)) =(h(x) — f(x))
Binary error: e (h(x), f(x)) =[h(x) # f(x)]
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From pointwise to overall

Overall error E/(h, f) = average of pointwise errors e (h(X), f(X))

In-sample error:

Qut-of-sample error:
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The learning diagram - with pointwise error
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How to choose the error measure

Fingerprint verification:
Two types of error:

false accept and false reject

How do we penalize each type?

f
+1 —1
+1 false accept

h

—1 | false reject
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The error measure - for supermarkets

Supermarket verities fingerprint for discounts

False reject is costly; customer gets annoyed!
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The error measure - for the CIA

CIA verities fingerprint for security

False accept is a disaster!

( +1 you

False reject can be tolerated

Try again; you are an employee ©
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Take-home lesson

The error measure should be specified by the user.

Not always possible. Alternatives:

Plausible measures: squared error = Gaussian noise

Friendly measures: closed-form solution, convex optimization
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The learning diagram - with error measure
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Noisy targets

The ‘target function' is not always a function

Consider the credit-card approval:

age 23 years
annual salary $30,000
years in residence 1 year
years in job 1 year
current debt

$15,000

two identical’ customers — two different behaviors
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Target ‘distribution

Instead of y = f(x), we use target distribution:

P(y | x)

(x,y) is now generated by the joint distribution:

Noisy target = deterministic target f(x) = E(y|X) plus noise y — f(x)

Deterministic target is a specia

P(y

P(x)P(y | x)

case of noisy target:

X ) is zero except for y = f(x)
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The learning diagram - including noisy target
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Distinction between P(y|x) and P(x)

Both convey probabilistic aspects of x and y

The target distribution P(y | x)
s what we are trying to learn

The input distribution P(x)
quantifies relative importance of x

Merging P(x)P(y|x) as P(x,y)

mixes the two concepts
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What we know so far

Learning is feasible. It is likely that

Eoui(g) = Ein(g)

s this learning?

We need g =~ f, which means

Eout(g) ~ (
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What the theory will achieve

Characterizing the feasibility of learning for

infinite M \ )’c—of—samme error

model complexity

Error

Characterizing the tradeoff:

Model complexity T Ein !
Model complexity T Eou— By |

in-sample error

|
|
|
i VC dimension, dyc
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