Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 4: Error and Noise

The learning diagram - where we left it

Error measures

What does " $h \approx f$ " mean?

Error measure: E(h, f)

Almost always pointwise definition: $e(h(\mathbf{x}), f(\mathbf{x}))$

Examples:

Squared error: $e(h(\mathbf{x}), f(\mathbf{x})) = (h(\mathbf{x}) - f(\mathbf{x}))^2$

Binary error: $e(h(\mathbf{x}), f(\mathbf{x})) = [h(\mathbf{x}) \neq f(\mathbf{x})]$

From pointwise to overall

Overall error E(h, f) = average of pointwise errors $e(h(\mathbf{x}), f(\mathbf{x}))$.

In-sample error:

$$E_{\text{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} e\left(h(\mathbf{x}_n), f(\mathbf{x}_n)\right)$$

Out-of-sample error:

$$E_{\mathrm{out}}(h) = \mathbb{E}_{\mathbf{x}} \big[e \left(h(\mathbf{x}), f(\mathbf{x}) \right) \big]$$

The learning diagram - with pointwise error

How to choose the error measure

Fingerprint verification:

Two types of error:

false accept and false reject

How do we penalize each type?

The error measure - for supermarkets

Supermarket verifies fingerprint for discounts

False reject is costly; customer gets annoyed!

False accept is minor; gave away a discount and intruder left their fingerprint \odot

The error measure - for the CIA

CIA verifies fingerprint for security

False accept is a disaster!

Take-home lesson

The error measure should be specified by the user.

Not always possible. Alternatives:

Plausible measures: squared error ≡ Gaussian noise

Friendly measures: closed-form solution, convex optimization

The learning diagram - with error measure

Noisy targets

The 'target function' is not always a function

Consider the credit-card approval:

age	23 years
annual salary	\$30,000
years in residence	1 year
years in job	1 year
current debt	\$15,000
• • •	

two 'identical' customers ———— two different behaviors

Target 'distribution'

Instead of $y = f(\mathbf{x})$, we use target distribution:

$$P(y \mid \mathbf{x})$$

 (\mathbf{x}, y) is now generated by the joint distribution:

$$P(\mathbf{x})P(y \mid \mathbf{x})$$

Noisy target = deterministic target $f(\mathbf{x}) = \mathbb{E}(y|\mathbf{x})$ plus noise $y - f(\mathbf{x})$

Deterministic target is a special case of noisy target:

$$P(y \mid \mathbf{x})$$
 is zero except for $y = f(\mathbf{x})$

The learning diagram - including noisy target

Distinction between $P(y|\mathbf{x})$ and $P(\mathbf{x})$

Both convey probabilistic aspects of ${f x}$ and y

The target distribution $P(y \mid \mathbf{x})$ is what we are trying to learn

The input distribution $P(\mathbf{x})$ quantifies relative importance of \mathbf{x}

Merging $P(\mathbf{x})P(y|\mathbf{x})$ as $P(\mathbf{x},y)$ mixes the two concepts

What we know so far

Learning is feasible. It is likely that

$$E_{\mathrm{out}}(g) pprox E_{\mathrm{in}}(g)$$

Is this learning?

We need $g \approx f$, which means

$$E_{\rm out}(g) \approx 0$$

What the theory will achieve

Characterizing the feasibility of learning for infinite M

Characterizing the tradeoff:

