
We formalize a Markov Decision Process or MDP for short as:

• States: States S with starting state sstart 2 S.

• Termination State: isEnd(s).

• Actions: a 2 A(s), all possible actions at state s.

• Rewards: R(s, a, s0), the reward of going from state s to s0 by taking action a.

• Transitions: T (s, a, s0), the probability of going from state s to s0 by taking action a.

• Discount: 0  �  1, the discount factor (default 1) for computing utility.

V⇡(s) is the expected utility received by following policy ⇡ from state s.
Q⇡(s, a) is the expected utility of taking action a from state s, and then following policy ⇡.

The following are off-policy algorithms that output the optimal Q-value, Qopt:

• Value Iteration: V (t)
opt(s) maxa2A(s) Q

(t�1)
opt (s, a).

• Model-Based Value Iteration: Estimate T and R using Monte Carlo, then run

value iteration using estimates T̂ and R̂.

• Q-Learning: Estimate Q̂opt(s, a) based on (i) the reward to state s0 and (ii) the

estimated optimal max value of s0.

The following are on-policy algorithms that output the Q-value, Q⇡, of a specific policy:

• Policy Iteration: V (t)
⇡ (s) Q(t�1)

⇡ (s, ⇡(s)).

• Model-Free Monte Carlo: Estimate Q̂⇡(s, a) from the utility, ut, along the path.

• SARSA: Estimate Q̂⇡(s, a) based on (i) the update (s, a, r, s0, a0) and (ii) the estimated

Q̂⇡(s0, a0).

Algorithm Estimating Based On

Model-Based Monte Carlo Q̂opt s0, a1, r1, s1, a2, r2, s2, . . . =) T̂ , R̂
Q-Learning Q̂opt (s, a, r, s0), V̂opt(s0)
Model-Free Monte Carlo Q̂⇡ ut = rt + �rt+1 + �2rt+2 + . . .
SARSA Q̂⇡ (s, a, r, s0, a0), Q̂⇡(s0, a0)

1

Julio Waissman Vilanova
Otro autobús mágico



1) Problem 1: MDP for Riding the Bus

(a) Sabina wants to go from their house (located at location 1) to the gym (located

at location n). At each location s, Sabina can either (i) deterministically walk

forward to the next location s+ 1 (takes 1 unit of time) or (ii) wait for the bus.

The bus comes with probability ✏, in which case, it will take Sabina to the gym in

1 + ↵(n� s) units of time, where ↵ is some parameter. If the bus doesn’t come,

then Sabina stays put waiting for nothing, and that takes 1 unit of time.

Let our reward be negative time, which is equivalent to minimizing the time it

takes to get to the gym.

1 2 3 4 . . . n

House · · · Gym

We have formalized the problem as an MDP for you:

• State: s 2 {1, 2, . . . , n} is Sabina’s location

• Actions(s) = {Walk,Bus}

• Reward(s,Walk, s0) =

(
�1 if s0 = s+ 1

�1 otherwise

• Reward(s,Bus, s0) =

8
><

>:

�1� ↵(n� s) if s0 = n

�1 if s0 = s

�1 otherwise

• T (s0|s,Walk) =

(
1 if s0 = s+ 1

0 otherwise

• T (s0|s,Bus) =

8
><

>:

✏ if s0 = n

1� ✏ if s0 = s

0 otherwise

• IsEnd(s) = 1[s = n]

BEFORE YOU MOVE FORWARD: Make sure you understand why
the MDP is formulated the way it is!

2



Compute closed form expressions for (i) the value of a policy where Sabina always

walks at every location and (ii) the value of a policy where Sabina always waits

for the bus at every location (using some or all of the variables ✏,↵, n). Assume

a discount rate of � = 1.

• VWalk(s) =

• VBus(s) =

For what values of ✏ (as a function of ↵ and n) is it advantageous to walk rather

than take the bus?

3



(b) Unfortunately, Sabina’s town is unable to provide transition probabilities or a

reward function (i.e. a bus schedule), making the above MDP possibly (and likely)

inaccurate. To get around this, Sabina decides to use reinforcement learning,

specifically Q-learning to determine the best policy. Sabina starts going around

town both by bus and by walking, recording the following data:

s0 a1 r1 s1 a2 r2 s2 a3 r3 s3 a4 r4 s4 a5 r5 s5
1 Bus -1 1 Bus -1 1 Bus 3 3 Walk 1 4 Walk 1 5

Run the Q-learning algorithm once over the given data to compute an estimate of

the optimal Q-value Qopt(s, a). Process the episodes from left to right. Assume all

Q-values are initialized to zero, and use a learning rate of ⌘ = 0.5 and a discount

of � = 1.

• Q̂(1,Walk) =

• Q̂(1,Bus) =

• Q̂(3,Walk) =

• Q̂(3,Bus) =

• Q̂(4,Walk) =

• Q̂(4,Bus) =

4


